(本小题满分12分)设二次函数满足下列条件:
①当∈R时,的最小值为0,且f (-1)=f(--1)成立;
②当∈(0,5)时,≤≤2+1恒成立。
(1)求的值;
(2)求的解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当∈时,就有成立。
(1)f(1)=1
(2)f(x)= (x+1)2
(3)t=-4时,对任意的x∈[1,9]
【解析】解:(2)由①知二次函数的关于直线x=-1对称,且开口向上
故设此二次函数为f(x)=a(x+1)2,(a>0),∵f(1)=1,∴a=
∴f(x)= (x+1)2
(3)假设存在t∈R,只需x∈[1,m],就有f(x+t)≤x.
f(x+t)≤x(x+t+1)2≤xx2+(2t-2)x+t2+2t+1≤0.
令g(x)=x2+(2t-2)x+t2+2t+1,g(x)≤0,x∈[1,m].
∴m≤1-t+2≤1-(-4)+2=9
t=-4时,对任意的x∈[1,9]
恒有g(x)≤0, ∴m的最大值为9.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com