精英家教网 > 高中数学 > 题目详情
4.若以椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点B(0,1)为直角顶点作椭圆内接等腰直角三角形,问这样的三角形能不能做?若能做,可做多少个?

分析 设能构成等腰直角三角形ABC,其中B(0,1),由题意可知,直角边BA,BC不可能垂直或平行于x轴,故可设BA边所在直线的方程为y=kx+1(不妨设k<0),则BC边所在直线的方程为y=-$\frac{1}{k}$x+1,由此判断是否存在内接等腰直角三角形.

解答 解:设能构成等腰直角三角形ABC,其中B(0,1),
由题意可知,直角边BA,BC不可能垂直或平行于x轴,
故可设BA边所在直线的方程为y=kx+1(不妨设k<0),
则BC边所在直线的方程为y=-$\frac{1}{k}$x+1,
由$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}+{a}^{2}{y}^{2}={a}^{2}}\end{array}\right.$,消去y,可得x=0或x=-$\frac{2k{a}^{2}}{1+{a}^{2}{k}^{2}}$,
得A(-$\frac{2k{a}^{2}}{1+{a}^{2}{k}^{2}}$,$\frac{1-{a}^{2}{k}^{2}}{1+{a}^{2}{k}^{2}}$),
∴|AB|=$\sqrt{(-\frac{2k{a}^{2}}{1+{a}^{2}{k}^{2}})^{2}+(-\frac{2{a}^{2}{k}^{2}}{1+{a}^{2}{k}^{2}})^{2}}$=$\frac{2{a}^{2}|k|\sqrt{1+{k}^{2}}}{1+{a}^{2}{k}^{2}}$,
用-$\frac{1}{k}$代替上式中的k,得|BC|=$\frac{2{a}^{2}\sqrt{1+{k}^{2}}}{{k}^{2}+{a}^{2}}$,
由|AB|=|BC|,得|k|(a2+k2)=1+a2k2
∵k<0,∴(k+1)(k2+k(a2-1)+1)=0,
对k2+(k(a2-1)+1=0的判别式△=(a2-1)2-4=(a2-3)(a2+1),
若△=0,则a=$\sqrt{3}$,解得k=-1;
若△<0,即0<a<$\sqrt{3}$,则k2+(k(a2-1)+1=0无实数解;
若△>0,即a>$\sqrt{3}$,则k2+k(a2-1)+1=0的解为k=$\frac{1-{a}^{2}+\sqrt{({a}^{2}-1)^{2}-4}}{2}$<0,
或k=$\frac{1-{a}^{2}-\sqrt{({a}^{2}-1)^{2}-4}}{2}$<0;
综上可得当0<a≤$\sqrt{3}$时,存在一个内接等腰直角三角形;
当a>$\sqrt{3}$时,存在三个内接等腰直角三角形.

点评 本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到直线与椭圆的相关知识,解题时要注意椭圆性质的灵活运用,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.计算:
(1)${log_{2.5}}6.25+lg\frac{1}{100}+ln(e\sqrt{e})+{log_2}({log_2}16)$;
(2)已知x+x-1=4,求x2+x-2-4的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等差数列{an}中,a2=4,a4+a7=15.
(1)求数列{an}的通项公式;
(2)设bn=2an-2+n,求{bn}的前n项和Sn
(3)求数列{$\frac{1}{{{a}_{n}}^{2}-1}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.方程$\frac{{x}^{2}}{sinθ-3}$+$\frac{{y}^{2}}{2sinθ+3}$=1所表示的图形是焦点在y轴上的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛物线的顶点为A(1,0),焦点为F(0,1),则抛物线的准线方程为x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2π+1}{3}$B.$\frac{2π+3}{3}$C.$\frac{4π+1}{3}$D.$\frac{4π+3}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.记log827=m,用m表示log616=$\frac{4}{1+m}$;已知log37=a,log34=b,则log1221=$\frac{1+a}{1+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)设函数f(x)=2x+1,求集合A和B;
(2)求证A⊆B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知条件p:关于x的不等式|x-1|+|x-3|<m有解;条件q:f(x)=(7-3m)x为减函数,则p成立是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案