精英家教网 > 高中数学 > 题目详情
9.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2π+1}{3}$B.$\frac{2π+3}{3}$C.$\frac{4π+1}{3}$D.$\frac{4π+3}{3}$

分析 根据几何体的三视图,得出该几何体是半球体与三棱锥的组合体,结合图中数据求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体的下部是半球体,上部是三棱锥,
且半球体的半径为1,三棱锥的底面为直角三角形,高为1;
所以该几何体的体积为
V=$\frac{1}{2}$×$\frac{4}{3}$π×13+$\frac{1}{3}$×$\frac{1}{2}$×2×1×1=$\frac{2π+1}{3}$.
故选:A.

点评 本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设O为△ABC的外心,且$\overrightarrow{OA}+\overrightarrow{OB}+\sqrt{3}\overrightarrow{OC}=\overrightarrow 0$,则△ABC的内角C=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A(1,2,3)、B(2,1,2)、C(1,1,2),O为坐标原点,点D在直线OC上运动,则当$\overrightarrow{DA}$•$\overrightarrow{DB}$取最小值时,点D的坐标为(  )
A.($\frac{4}{3}$,$\frac{4}{3}$,$\frac{4}{3}$)B.($\frac{8}{3}$,$\frac{4}{3}$,$\frac{8}{3}$)C.($\frac{4}{3}$,$\frac{4}{3}$,$\frac{8}{3}$)D.($\frac{8}{3}$,$\frac{8}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{1}{3x-1}$,求f(-2),f(0),f($\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若以椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点B(0,1)为直角顶点作椭圆内接等腰直角三角形,问这样的三角形能不能做?若能做,可做多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,ABCD是正方形,SA⊥平面ABCD,BK⊥SC于点K,连接DK,求证:
(1)平面SBC⊥平面KBD;
(2)平面SBC不垂直于平面SDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=$\frac{1}{2}$(cosx-sinx)(cosx+sinx)-2asinx+b(a>0).
(1)若b=1,且对任意x∈(0,$\frac{π}{6}$),恒有f(x)>0,求a的取值范围.
(2)若f(x)的最大值为1,最小值为-4,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算下列定积分:
${∫}_{0}^{1}$$\root{3}{x}$(1+$\sqrt{x}$)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一条直线不与坐标轴平行或重合,则它的方程(  )
A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式
C.可以写成点斜式或截距式D.可以写成两点式或截距式或点斜式

查看答案和解析>>

同步练习册答案