精英家教网 > 高中数学 > 题目详情

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量.(注:总收益=总成本+利润)

(1)将利润表示为月产量的函数;

(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

【答案】(1);;(2)月产量为300台时,公司所获利润最大,最大利润是25000元

【解析】

(1)根据利润=收益-成本,由已知分两段当时,和当时,求出利润函数的解析式;

(2)根据分段函数的表达式,分别求出函数的最大值即可得到结论.

(1)由于月产量为台,则总成本为,

从而利润

(2)当时,

所以当时,有最大值25000;

时,是减函数,

所以当时,有最大值25000,

即当月产量为300台时,公司所获利润最大,最大利润是25000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 + =1(a>b>0)的左右焦点分别为F1 , F2 , 点D在椭圆上,DF1⊥F1F2 =2 ,△DF1F2的面积为 . (Ⅰ)求该椭圆的标准方程;
(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=(x2﹣2ax)lnx+2ax﹣ x2 , 其中a∈R.
(1)若a=0,且曲线f(x)在x=t处的切线l过原点,求直线l的方程;
(2)求f(x)的极值;
(3)若函数f(x)有两个极值点x1 , x2(x1<x2),证明f(x1)+f(x2)< a2+3a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,如果输入的a=﹣1,则输出的S=( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处的切线为也为函数的图象的切线必须满足

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,a3+b3=2,证明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

B. 在线性回归分析中,回归直线不一定过样本点的中心

C. 在回归分析中, 为0.98的模型比为0.80的模型拟合的效果好

D. 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个盒子,甲盒子中有8张卡片,其中2张写有数字0,3张写有数字1,3张写有数字2;乙盒子中有8张卡片,其中3张写有数字0,2张写有数字1,3张写有数字2.

(1)如果从甲盒子中取2张卡片,从乙盒中取1张卡片,那么取出的3张卡片都写有1的概率是多少?

(2)如果从甲、乙两个盒子中各取1张卡片,设取出的两张卡片数字之和为X,求X的概率分布.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A、B、C的对边分别为a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4 ,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案