精英家教网 > 高中数学 > 题目详情
数列{an}是递增的等差数列,且a1+a6=-6,a3•a4=8.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn的最小值;
(3)求数列{|an|}的前n项和Tn
分析:(1)依题意,解方程组
a1+a6=-6
a3a4=8
?
a3+a4=-6
a3a4=8
可得a3=-4,a4=-2,从而可求数列{an}的通项公式;
(2)由(1)知,an=2n-10,于是可得Sn=(n-
9
2
)
2
-
81
4
,继而可得Sn的最小值;
(3)由an≥0解得n≥5,分1≤n≤5与n≥6讨论,可分别求得数列{|an|}的前n项和Tn
解答:解:(1)由
a1+a6=-6
a3a4=8
得:
a3+a4=-6
a3a4=8

∴a3、a4是方程x2+6x+8=0的二个根,
∴x1=-2,x2=-4;
∵等差数列{an}是递增数列,
∴a3=-4,a4=-2,
∴公差d=2,a1=-8.
∴an=2n-10;
(2)∵Sn=
n(a1+an)
2
=n2-9n=(n-
9
2
)
2
-
81
4

∴(Snmin=S4=S5=-20;
(3)由an≥0得2n-10≥0,解得n≥5,此数列前四项为负的,第五项为0,从第六项开始为正的.
当1≤n≤5且n∈N*时,
Tn=|a1|+|a2|+…+|an|
=-(a1+a2+…+an
=-Sn
=-n2+9n;
当n≥6且n∈N*时,
Tn=|a1|+|a2|+…+|a5|+|a6|+…+|an|
=-(a1+a2+…+a5)+(a6+…+an
=Sn-2S5
=n2-9n-2(25-45)
=n2-9n+40.
∴Tn=
9n-n2,1≤n≤5,n∈N*
n2-9n+40,n≥6,n∈N*
点评:本题考查数列的求和,着重考查等差数列的求和,突出方程思想与分类讨论思想的综合运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列四个命题:
①函数y=10-x和函数y=10x的图象关于x轴对称;
②所有幂函数的图象都经过点(1,1);
③曲线y=x2与y2=x所围成的图形的面积是
1
3

④若{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的充要条件.
其中真命题的个数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比为q的等比数列,给出下列命题
①数列{an}的前n项和Sn=
a1-an+11-q

②若q>1,则数列{an}是递增数列;
③若a1<a2<a3,则数列{an}是递增数列;
④若等比数列{an}前n项和Sn=3n+a,则a=-1.
其中正确的是
③④
③④
 (请将你认为正确的命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的首项为a1,公比为q,给出下列四个有关数列{an}的命题:
p1:如果a1>0且q>1,那么数列{an}是递增的等比数列;
p2:如果a1<0且q<1,那么数列{an}是递减的等比数列;
p3:如果a1<0且0<q<1,那么数列{an}是递增的等比数列;
p4:如果a1>0且0<q<1,那么数列{an}是递减的等比数列.
其中为真命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

数列{an}是首项为1的等差数列,数列{bn}是首项为1的等比数列,设cn=an·bn(n∈N*),且数列{cn}的前三项依次为1,4,12.

(1)求数列{an},{bn}的通项公式;

(2)若数列{an}是递增的等差数列,求数列{cn}的前n项的和.

查看答案和解析>>

同步练习册答案