精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,}&{x>0}\\{{2}^{x},}&{x≤0}\end{array}\right.$若f(1)+f(a)=2,则a的值为4.

分析 根据函数的表达式先求出f(1),从而求出f(a)的值,求出a即可.

解答 解:f(1)=log21=0,
即由f(1)+f(a)=2得f(a)=2-f(1)=2-0=2,
若a>0,则由f(a)=log2a=2,得a=4,
若a≤0,则由f(a)=2a=2,得a=1,不成立,
综上a=4,
故答案为:4.

点评 本题主要考查函数值的计算,根据分段函数的表达式直接代入解方程即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在区间[-1,m]上随机选取一个数x,若x≤1的概率为$\frac{2}{5}$,则实数m的值为(  )
A.$\frac{3}{2}$B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=2sin2(2x+$\frac{π}{6}$)-sin(4x+$\frac{π}{3}$)的图象向右平移$\frac{π}{12}$个单位后,得到新函数图象的对称轴方程为(  )
A.x=$\frac{kπ}{4}$(k∈Z)B.x=$\frac{kπ}{4}$-$\frac{π}{8}$(k∈Z)C.x=$\frac{kπ}{4}$+$\frac{π}{8}$(k∈Z)D.x=$\frac{kπ}{4}$+$\frac{π}{16}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,O(0,0),D(0,2),线段OD的中点为椭圆C的一个顶点,郭点D且斜率为k的直线l交椭圆C于A,B两点.
(1)设线段AB的中点为G,求直线OG的斜率与k的乘积;
(2)若OA⊥OB,且A、B在x轴上的射影分别为A′、B′,求|AA′|•|BB′|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.利用求曲边梯形面积的方法计算y=x,直线x=a,x=b和x轴所围成的曲边梯形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=x+sinπx,则f(${\frac{1}{2017}}$)+f(${\frac{2}{2017}}$)+f(${\frac{3}{2017}}$)+…+f(${\frac{4033}{2017}}$)的值为4033.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义:使函数y=f(x)的函数值为零的x的值叫函数y=f(x)的幸运点(如:y=x2-2x+1的幸运点为x=1,y=x2-2x-3的幸运点为x=3,x=-1;y=x+1的幸运点为x=-1),设f(x)=$\left\{\begin{array}{l}{(x+1)^{2}-3(x≤1)}\\{\frac{1}{x}(x>1)}\end{array}\right.$,若g(x)=f(x)-b恰好有两个幸运点,则实数b的取值范围为(-3,0]∪{1}..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log2(x-m),其中m∈R.
(1)若函数f(x)在区间(2,3)内有一个零点,求m的取值范围;
(2)若函数f(x)在区间[1,t](t>1)上的最大值与最小值之差为2,且f(t)>0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.电视剧《人民的名义》中有一个低矮的接待上访服务窗口,假设群众办理业务所需的时间互相独立,且都是10分钟的整数倍,对以往群众办理业务所需的时间统计结果如下:
办理业务所需的时间(分)1020304050
频率0.30.30.20.10.1
假设排队等待办理业务的群众不少于3人,从第一个群众开始办理业务时开始计时.
(Ⅰ)估计第三个群众恰好等待40分钟开始办理业务的概率;
(Ⅱ)X表示至第20分钟末已办理完业务的群众人数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案