(2)已知函数f(x)满足f(x+y)+f(x-y)=
解析:(1)此函数未给出表达式属抽象函数,考虑到等式f(ab) =f(a)+f(b)对a、b∈R均成立,可用特殊值代入,将f(36)转化为f(2)和f(3)来求.?
f(36)=f(4·9)=f(4)+f(9),?
令a=b,得f(a2)=
(2)由题设f(x)的定义域为R,令x=y=0,得
又f(0)≠0,
∴f(0)=1.?
再令x=y=,
得f(π)+f(0)=
故f(π)=-1.?
要求f(2π),只需令x=y=π.?
得f(2π)+f(0)=
∴f(2π)=1.
科目:高中数学 来源: 题型:
1+x2 |
b(1+x2) |
3 |
3 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:阅读理解
仔细阅读下面问题的解法:
设A=[0, 1],若不等式21-x-a>0在A上有解,求实数a的取值范围。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上单调递减,f(x)max =f(0)=2. ∴实数a的取值范围为a<2.
研究学习以上问题的解法,请解决下面的问题:
(1)已知函数f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=,x∈A,试判断g(x)的单调性(写明理由,不必证明);
(3)若B ={x|>2x+a–5},且对于(1)中的A,A∩B≠F,求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源:新课标高三数学函数的图象奇偶性、周期性专项训练(河北) 题型:解答题
若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(3)在(1)(2)的条件下,当t>0时,若对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com