精英家教网 > 高中数学 > 题目详情
15.如图,对于所给的算法中,若执行循环体的次数为1000,则原程序语言中实数a的取值范围是1000≤a<1001.

分析 根据框图的流程依次写出每次循环得到的s,i的值,第999次循环i=1000,此时,不满足条件1000>a,继续循环,第1000次循环时i=1001,此时,1001满足条件1001>a,退出循环,输出s的值,即可得到实数a的取值范围.

解答 解:由框图的流程得:第1次循环s=0+1,i=2;
第2次循环s=0+1+2,i=3;
第3次循环s=0+1+2+3,i=4;

第999次循环s=0+1+2+…+999,i=1000;
此时,不满足条件1000>a,继续循环,
第1000次循环s=0+1+2+…+1000,i=1001;
此时,1001满足条件1001>a,退出循环,输出s的值.
综上可得:1000≤a<1001.
故答案为:1000≤a<1001.

点评 本题考查了由程序语句判断执行循环体的次数,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a,b,c是角A,B,C的对边,若a,b,c成等比数列,A=45°,则$\frac{bsinB}{c}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}的通项公式an=2n-1,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足an+1=$\frac{{a}_{n}}{{2}_{{a}_{n}+1}}$,a1=1(n∈N+
(1)试猜想{an}的通项公式并用数学归纳法证明;
(2)令bn=anan+1,记数列{bn}的前n项和为Sn,求证:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}中,a2=8,其前10项的和S10=185,
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取第3项,第9项,第27项…第3n项…并按原来的顺序组成一个新的数列{bn},求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,BC=2,BC边上的高为$\sqrt{3}$,则∠BAC的范围为(  )
A.(0,$\frac{π}{6}$]B.[$\frac{π}{6}$,$\frac{π}{4}$]C.(0,$\frac{π}{3}$]D.[$\frac{π}{3}$,$\frac{π}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图显示.
(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值;
(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,并在这5人中随机抽取3人进行回访,求此三人获得代金券总和为200元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数   N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n      正方形数   N(n,4)=n2
五边形数   N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n   六边形数   N(n,6)=2n2-n
可以推测N(n,k)的表达式,由此计算N(10,14)=550.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2$\sqrt{3}sinxcosx+2{cos^2}$x-1
(Ⅰ)求f(x)的最小正周期;
(Ⅱ) 当$x∈[0,\frac{π}{2}]$时,求函数f(x)的最值;
(Ⅲ)当x∈[0,π]时,求f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案