| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{3}{4}$ |
分析 由a,b,c成等比数列,根据等比数列的性质化简得到关于a,b及c的关系式,利用正弦定理化简后得到关于sinA,sinB及sinC的关系式,然后把所求的式子也利用正弦定理化为关于正弦函数的式子,把化简得到关系式及A的度数代入求出值.
解答 解:由a,b,c成等比数列,得到b2=ac,由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$得:sin2B=sinA•sinC.
又A=45°,
∴$\frac{bsinB}{c}$=$\frac{si{n}^{2}B}{sinC}$=$\frac{sinA•sinC}{sinC}$=sinA=$\frac{\sqrt{2}}{2}$.
故选:C.
点评 此题考查了正弦定理及特殊角的三角函数值,要求学生熟练掌握正弦定理的运用,牢记特殊角的三角函数值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{ab}>\frac{1}{2}$ | B. | a2+b2≥8 | C. | $\sqrt{ab}$≥2 | D. | $\frac{1}{a}+\frac{1}{b}$≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com