精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=(x-2)ex
(I)求f(x)的单调区间;
(II)函数g(x)=ax2-2ax,若对一切x∈(2,+∞)有f(x)≥g(x)恒成立,求a的取值范围.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)问题转化为a≤$\frac{{e}^{x}}{x}$在x∈(2,+∞)恒成立,令h(x)=$\frac{{e}^{x}}{x}$,根据函数的单调性求出a的范围即可.

解答 解:( I)f′(x)=(x-1)ex
令f′(x)>0,解得:x>1,
令f′(x)<0,解得:x<1,
函数在(-∞,1)上单减,在(1,+∞)上单增;
( II)若对一切x∈(2,+∞)有f(x)≥g(x)恒成立,
则(x-2)ex≥ax(x-2),在(2,+∞)恒成立,
即a≤$\frac{{e}^{x}}{x}$在x∈(2,+∞)恒成立,
令h(x)=$\frac{{e}^{x}}{x}$,则h′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$>0,x∈(2,+∞),
故h(x)>h(2)=$\frac{{e}^{2}}{2}$,
则a≤h(2)=$\frac{{e}^{2}}{2}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.将两个数a=2014,b=2015交换使得a=2015,b=2014下列语句正确的一组是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,底面△ABC是边长为2的等边三角形,过A1C作平面A1CD平行于BC1,交AB于D点.
(1)求证:CD⊥AB;
(2)若四边形BCC1B1是正方形,且${A_1}D=\sqrt{5}$,求二面角D-A1C-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三棱锥S-ABC中,底面ABC为等腰直角三角形,BA=BC=2,侧棱SA=SC=2$\sqrt{3}$,二面角S-AC-B的余弦值为$\frac{\sqrt{5}}{5}$,则此三棱锥外接球的表面积为(  )
A.16πB.12πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知“x>k”是“$\frac{3}{|x|}$<1”的充分不必要条件,则k的取值范围是(  )
A.[3,+∞)B.[2,+∞)C.(3,+∞)D.(一∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙 两人独立地破译一个密码,他们能译出密码的概率分别为$\frac{1}{3}和\frac{1}{4}$,求:
(Ⅰ) 两个人都能译出密码的概率;
(Ⅱ) 恰有一个人译出密码的概率;
(Ⅲ) 至多有一个人译出密码的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=(  )
A.{0}B.{1}C.{0,1}D.{0,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=2f′(1)lnx-x,则f′(1)的值为1.

查看答案和解析>>

同步练习册答案