精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a1+a2+…+a10=65,a11+a12+…+a20=165,则a1=(  )
A.1B.2C.3D.4
由题根据等差数列的性质知(a11+a12+…+a20)-(a1+a2+…+a10)=100d
故100d=165-65=100,解得d=1
再由等差数列{an}中,a1+a2+…+a10=65,可得a1+a10=13
即2a1+9d=13,结合d=1,解得a1=2
故选B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案