精英家教网 > 高中数学 > 题目详情
已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )
分析:由数列{an}为等差数列,利用等差数列的性质得到2an=an-1+an+1,代入已知的等式中得到关于an的方程,求出方程的解得到an的值,然后利用等差数列的求和公式表示出S2n-1,利用等差数列的性质化简后,将an的值以及S2n-1=38代入,即可求出n的值.
解答:解:∵数列{an}为等差数列,
∴2an=an-1+an+1,又an-1-an2+an+1=0,
∴an(2-an)=0,
∵an≠0,∴an=2,
又S2n-1=
(2n-1)(a1+a2n-1
2
=(2n-1)an=2(2n-1)=38,
∴2n-1=19,
则n=10.
故选A
点评:此题考查了等差数列的性质,以及等差数列的求和公式,熟练掌握性质及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案