精英家教网 > 高中数学 > 题目详情
18.500辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过70km/h的汽车数量为50辆.

分析 频率分布直方图中,小矩形的高等于每一组的$\frac{频率}{组距}$,它们与频数成正比,小矩形的面积等于这一组的频率,先求出[70,80)内的样本频率,再乘以样本容量就可求出频数

解答 解:样本数据落在[70,80)内的频率为0.010×10=0.1,
∴样本数据落在[70,80)内的频数为0.1×500=50.
故答案为:50.

点评 本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,$∠{A_1}AD=\frac{π}{3}$,若O为AD的中点,且CD⊥A1O.
(Ⅰ)求证:A1O⊥平面ABCD;
(Ⅱ)线段BC上是否存在一点P,使得二面角D-A1A-P的大小为$\frac{π}{3}$?若存在,求出BP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合 A={x|-2≤x≤3},B={x|x<-1},则集合A∩B=(  )
A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow a=(sinωx,sin(ωx+\frac{π}{2})),\overrightarrow b=(sinωx,\sqrt{3}sinωx)$(ω>0),记f(x)=$\overrightarrow a•\overrightarrow b$.且f(x)的最小正周期为π.
(1)求f(x)的最大值及取得最大值时x的集合;
(2)求f(x)在区间$[{0,\frac{2π}{3}}]$上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有一个容量为100的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为(  )
A.18B.36C.54D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为$\sqrt{2}$,倾斜角为45°的直线l过点F.
(1)求该椭圆的方程;
(2)若过点$M(1,\frac{1}{2})$的直线l与椭圆C相交于A,B两点,且M点恰为弦AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足a1=3,an+1-an=2n,则an=n2-n+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若{an}为等比数列,则“a1<a3<a5”是“数列{an}是递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:x-y+9=0,椭圆E:$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1,
(1)过点M($\frac{1}{2}$,$\frac{1}{2}$)且被M点平分的弦所在直线的方程;
(2)P是椭圆E上的一点,F1、F2是椭圆E的两个焦点,当P在何位置时,∠F1PF2最大,并说明理由;
(3)求与椭圆E有公共焦点,与直线l有公共点,且长轴长最小的椭圆方程.

查看答案和解析>>

同步练习册答案