精英家教网 > 高中数学 > 题目详情
已知函数f (x) =(2 -a )(x -1 )-2lnx ,(a ∈R ,e 为自然对数的底数)
(1 )当a =1 时,求f (x) 的单调区间;
(2 )若函数f (x) 在(0 ,)上无零点,求a的最小值
解:(Ⅰ)当 a=1时, 
 由 
 的单调减区间为 单调增区间为 
(Ⅱ)因为 在 上恒成立不可能,故要使函数 在 上无零点,
只要对任意的 恒成立,即对 恒成立.
令  则  
再令   
 上为减函数,
于是 
从而, ,
于是 在 上为增函数  故要使 恒成立,
只要 
综上,若函数 在 上无零点,则 的最小值为 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案