((本小题满分12分)设函数的图象关于原点对称,且=1时,f(x)取极小值。
(1)求的值;
(2)若时,求证:。
解答(1) ∵函数f(x)图象关于原点对称,∴对任意实数x,都有f(-x)=- f(x).
∴-ax3-2bx2-cx+4d=-ax3+2bx2-cx-4d,即bx2-2d=0恒成立.
∴b=0,d=0,即f(x)=ax3+cx. ∴f′(x)=3ax2+c.
∵x=1时,f(x)取极小值-. ∴f′(1)=0且f(1)=- ,
即3a+c=0且a+c=-. 解得a=,c=-1………………………………….6分
(2)证明:∵f′(x)=x2-1,由f′(x)=0,得x=±1.
当x∈(-∞,-1)或(1,+∞)时,f′(x)>0; 当 x∈(-1,1)时,f′(x)<0.
∴f(x)在[-1,1]上是减函数,且fmax(x)=f(-1)= , fmin(x)=f(1)= -.
∴在[-1,1]上,|f(x)|≤.
于是x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤=+=.
故x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤………………………………………….12分
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com