【题目】已知函数
.
(1)若
在
单调递增,求
的值;
(2)当
时,设函数
的最小值为
,求函数
的值域.
【答案】(1)
.(2)![]()
【解析】
(1)对函数进行求导得
,由
在
单调递增,得
,即
,利用分析法,对
进行分类讨论,即可得答案;
(2)利用隐零点法求出函数
最小值为
,得
,利用导数研究函数令
,的值域,即可得答案;
(1)
.
因为
在
单调递增,所以
,即
(i)当
时,
,则需
,故
,即
;
(ii)当
时,
,则
;
(iii)当
时,
,则需
,故
,即
.
综上述,
.
(2)
.
因为
,所以
,所以
在
单调递增
又因为
,
所以存在
,使
,
且当
时,
,函数
单调递减;
当
时,
,函数
单调递增.
故
最小值为
.
由
,得
,因此
.
令
,则
,
所以
在区间
上单调递增.
又因为
,且
,
所以
,即
取遍
的每一个值,
令
,
则
,
故函数
在
单调递增.
又
,所以
,故函数
的值域为
.
科目:高中数学 来源: 题型:
【题目】某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.
(1)若选择生产线①,求生产成本恰好为18万元的概率;
(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如下茎叶图:
![]()
(1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;
(2)设所有50名骑手在相同时间内完成订单数的平均数
,将完成订单数超过
记为“优秀”,不超过
记为“一般”,然后将骑手的对应人数填入下面列联表;
优秀 | 一般 | |
甲配送方案 | ||
乙配送方案 |
(3)根据(2)中的列联表,判断能否有
的把握认为两种配送方案的效率有差异.
附:
,其中
.
| 0.05 | 0.010 | 0.005 |
| 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知曲线
:
(
为参数),曲线
:
(
为参数),且
,点P为曲线
与
的公共点.
(1)求动点P的轨迹方程;
(2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为
,求动点P到直线l的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与圆
相外切,且与直线
相切.
(1)记圆心
的轨迹为曲线
,求
的方程;
(2)过点
的两条直线
与曲线
分别相交于点
和
,线段
和
的中点分别为
.如果直线
与
的斜率之积等于1,求证:直线
经过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是各项均为正数的等差数列,
,
是
和
的等比中项,
的前
项和为
,
.
(1)求
和
的通项公式;
(2)设数列
的通项公式
.
(i)求数列
的前
项和
;
(ii)求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点
与定点
的距离和它到直线
的距离的比是常数
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过坐标原点
的直线交轨迹
于
,
两点,轨迹
上异于
,
的点
满足直线
的斜率为
.
(ⅰ)证明:直线
与
的斜率之积为定值;
(ⅱ)求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
和曲线
的直角坐标方程;
(2)若点
坐标为
,直线
与曲线
交于
两点,且
,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com