精英家教网 > 高中数学 > 题目详情
6.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是(  )
A.B.C.D.

分析 根据图象的对称关系和条件可知C(6)=0,C(12)=10,再根据气温变化趋势可知在前一段时间内平均气温大于10,使用排除法得出答案.

解答 解:∵气温图象在前6个月的图象关于点(3,0)对称,∴C(6)=0,排除D;
注意到后几个月的气温单调下降,则从0到12月前的某些时刻,平均气温应大于10℃,可排除C;
∵该年的平均气温为10℃,∴t=12时,C(12)=10,排除B;
故选A.

点评 本题考查了函数图象的几何意义,函数图象的变化规律,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=x2-2x的递减区间为(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC的边BC上有一点D满足$\overrightarrow{BD}$=3$\overrightarrow{DC}$,则$\overrightarrow{AD}$可表示为(  )
A.$\overrightarrow{AD}$=-2$\overrightarrow{AB}$+3$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知中心在原点,焦点在x轴上的椭圆C过点(1,$\frac{\sqrt{2}}{2}$),离心率为$\frac{{\sqrt{2}}}{2}$,A1,A2是椭圆C的长轴的两个端点(A2位于A1右侧),B是椭圆在y轴正半轴上的顶点.
(1)求椭圆C的标准方程;
(2)是否存在经过点(0,$\sqrt{2}$)且斜率为k的直线l与椭圆C交于不同两点P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{{A_2}B}$共线?如果存在,求出直线方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y∈R,i是虚数单位,且(2x+i)(1-i)=y,则y的值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,点P(1,$\frac{\sqrt{2}}{2}$)在椭圆E上,直线l过椭圆的右焦点F且与椭圆相交于A,B两点.
(1)求E的方程;
(2)在x轴上是否存在定点M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值?若存在,求出定点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α是第三象限角,且cos(α+π)=$\frac{4}{5}$,则tan2α=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U={1,2,3,4},A={1,2},则满足A⊆B的集合B个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某化工厂O正东方向和北偏西60°方向分别有两条通向工厂的公路,工厂正北方向有一观察站C,OC=2千米,因化工厂原料泄漏,工厂周围1千米的范围内均有不同程度的影响.现准备从观察站C处修两条隔离绿化带CA,CB(其中A,B为隔离带与公路交接点).且使CA⊥CB,隔离带与两条公路线围成的面积为S.
(1)①若OA=a千米,试把S表示成a的函数.并写出其定义域;
②若∠OAC=θ,试把S表示成θ的函数,并写出其定义域;
(2)选择上述两个函数中的以个,试求S的最小值.

查看答案和解析>>

同步练习册答案