精英家教网 > 高中数学 > 题目详情

在四边形ABCD中,“∃λ∈R,使得AB=λDC,AD=λBC”是“四边形ABCD为平行四边形”的(  )

 

A.

充分而不必要条件

B.

必要而不充分条件

 

C.

充分必要条件

D.

既不充分也不必要条件

考点:

必要条件、充分条件与充要条件的判断.

专题:

证明题.

分析:

根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形和必要条件、充分条件与充要条件的定义进行判断即可.

解答:

解:由在四边形ABCD中,“∃λ∈R,使得AB=λDC,AD=λBC”,不能得出AB∥DC,AD∥BC,

如图,AB=2DC,AD=2BC,不得到四边形ABCD为平行四边形.

也就不得到四边形ABCD为平行四边形,

反之,由四边形ABCD为平行四边形,得到AB=DC,AD=BC,从而有:∃λ=1∈R,使得AB=λDC,AD=λBC,

故在四边形ABCD中,“∃λ∈R,使得AB=λDC,AD=λBC”是“四边形ABCD为平行四边形”的必要而不充分条件.

故选B.

点评:

本题主要考查对平行四边形的判定定理,必要条件、充分条件与充要条件的判断,能灵活运用平行四边形的判定进行证明是解此题的关键,此题是一个比较综合的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在四边形ABCD中,EF∥BC,FG∥AD,则
EF
BC
+
FG
AD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,CD∥AB,AB=4,CD=1,点M在PB上,且MB=3PM,PB与平面ABC成30°角.
(1)求证:CM∥面PAD;
(2)求证:面PAB⊥面PAD;
(3)求点C到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四边形ABCD中,
AB
=
DC
且|
AB
|=|
AD
|,则四边形的形状为
菱形
菱形

查看答案和解析>>

科目:高中数学 来源: 题型:

在四边形ABCD中,若
AC
BD
=0,
AB
=
DC
,则四边形ABCD的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大丰市一模)在四边形ABCD中,对角线AC与BD互相平分,交点为O.在不添加任何辅助线的前提下,要使四边形ABCD成为矩形,还需添加一个条件,这个条件可以是
∠ABC=90°或AC=BD(答案不唯一)
∠ABC=90°或AC=BD(答案不唯一)

查看答案和解析>>

同步练习册答案