精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)设(其中的导函数),求的最大值;
(Ⅱ)求证:当时,有
(Ⅲ)设,当时,不等式恒成立,求的最大值.

(Ⅰ)取得最大值;(Ⅱ)见解析;(Ⅲ)整数的最大值是.

解析试题分析:(Ⅰ)通过求的导函数处理函数的单调性,从而确定在时,取得最大值;(Ⅱ)由(Ⅰ)可知当时,,从而有.(Ⅲ)先由当时,不等式恒成立转化为对任意恒成立,设,通过导函数求出的单调性从而得出,整数的最大值是.
试题解析:(Ⅰ),所以 .  
时,;当时,
因此,上单调递增,在上单调递减.
因此,当时,取得最大值;                 3分
(Ⅱ)当时,.由(1)知:当时,,即
因此,有.      7分
(Ⅲ)不等式化为所以
对任意恒成立.令
,令,则
所以函数上单调递增.因为
所以方程上存在唯一实根,且满足
,即,当,即
所以函数上单调递减,在上单调递增.
所以
所以.故整数的最大值是.        13分
考点:1.利用导数处理函数的单调性和最值;2.利用导数处理不等式恒成立问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1与l2接通.已知AB = 60m,BC = 80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设∠EFB= α,矩形区域内的铺设水管的总费用为W.

(1)求W关于α的函数关系式;
(2)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为元/本(9≤≤11),预计一年的销售量为万本.
(1)求该出版社一年的利润(万元)与每本书的定价的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润最大,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当时,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若,对定义域内任意x,均有恒成立,求实数a的取值范围?
(Ⅲ)证明:对任意的正整数恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设为函数的图象上任意不同两点,若过两点的直线的斜率恒大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(1)若,求曲线在点处的切线方程;
(2)若无零点,求实数的取值范围;
(3)若有两个相异零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数为奇函数,求a的值;
(2)若函数处取得极大值,求实数a的值;
(3)若,求在区间上的最大值.

查看答案和解析>>

同步练习册答案