精英家教网 > 高中数学 > 题目详情

已知函数,其中
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.

(I)函数的零点个数有3个;(Ⅱ) 

解析试题分析:(I)为确定函数零点的个数,可通过研究函数图象的形态、函数的单调性完成,具体遵循“求导数、求驻点、分区间讨论导数的正负、确定函数的单调性”等步骤.
(Ⅱ)为确定函数的极值,往往遵循“求导数、求驻点、分区间讨论导数的正负、确定函数的极值”等步骤.
本小题利用“表解法”,形象直观,易于理解.为使满足,从而得到.
试题解析:
(I),  1分
时,有最小值为
所以,即,  2分
因为,所以,  3分
所以
所以上是减函数,在上是增函数,  4分
,  5分
故函数的零点个数有3个;  6分
(Ⅱ),得,  7分
,根据(I),当变化时,的符号及的变化情况如下表:



0





0

0



极大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(1)当时,求的单调区间;
(2)对任意的恒成立,求的最小值;
(3)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是R上的奇函数,当取得极值.
(I)求的单调区间和极大值
(II)证明对任意不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且,求解下列各题:
(1)求的取值范围;
(2)若上为单调增函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若,求的极小值;
(Ⅱ)在(Ⅰ)的结论下,是否存在实常数,使得?若存在,求出的值.若不存在,说明理由.
(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且,求解下列各题:
(1)求的取值范围;
(2)若上为单调增函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)求证:
(Ⅱ)设直线均相切,切点分别为()、(),且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设(其中的导函数),求的最大值;
(Ⅱ)求证:当时,有
(Ⅲ)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

同步练习册答案