精英家教网 > 高中数学 > 题目详情

已知函数f(x)=-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.

(1);(2)的取值范围为.

解析试题分析:(1)求出函数解析式,根据导数几何意义解答即可;(2)求出函数导数令其等于零得,当,即时,在[1,e]上单调递增,求出最小值验证,符合题意,当,和时其最小值都不是,故不合题意,所以.
试题解析:(1)当时,        1分
             3分
所以切线方程是                  4分
(2)函数的定义域是
时,         5分
,即
所以             6分
,即时,在[1,e]上单调递增,
所以在[1,e]上的最小值是;………………8分
时,在[1,e]上的最小值是,不合题意; 10分
时,在[1,e]上单调递减,  
所以在[1,e]上的最小值是,不合题意      11分
的取值范围为;                    12分
考点:导数的几何意义、利用导数求函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知x=1是函数的一个极值点,
(Ⅰ)求a的值;
(Ⅱ)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间及最大值;
(2)恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a为实数,函数f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间内的最小值为,求的值.(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1与l2接通.已知AB = 60m,BC = 80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设∠EFB= α,矩形区域内的铺设水管的总费用为W.

(1)求W关于α的函数关系式;
(2)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设为函数的图象上任意不同两点,若过两点的直线的斜率恒大于,求的取值范围.

查看答案和解析>>

同步练习册答案