【题目】已知过椭圆的四个顶点与坐标轴垂直的四条直线围成的矩形(是第一象限内的点)的面积为,且过椭圆的右焦点的倾斜角为的直线过点.
(1)求椭圆的标准方程
(2)若射线与椭圆的交点分别为.当它们的斜率之积为时,试问的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
【答案】(1);(2)的面积为定值.
【解析】
(1)根据矩形面积、直线斜率和椭圆关系可构造方程组求得,进而得到椭圆标准方程;
(2)当直线斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,利用弦长公式求得,点到直线公式求得点到直线距离,进而表示出;根据,代入韦达定理形式化简可得,代入中化简得到;当直线斜率不存在时,可求得两点坐标,进而求得;综合两种情况可知为定值.
(1)由题意得:,,,.
直线的斜率,,
由得:,椭圆的标准方程为.
(2)的面积为定值,理由如下:
设,,
①当直线斜率存在时,设方程为.
由得:,
则,即,
,,
,
又点到直线的距离,
.
,,
化简可得:,满足,
;
②当直线斜率不存在时,
且,可设,,
则点的坐标分别为,,
此时;
综上所述:的面积为定值.
科目:高中数学 来源: 题型:
【题目】已知一动圆P与定圆外切,且与直线相切,记动点P的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点作直线l与曲线E交于不同的两点B、C,设BC中点为Q,问:曲线E上是否存在一点A,使得恒成立?如果存在,求出点A的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三名乒乓球手进行单打对抗比赛,每两人比赛一场,共赛三场,每场比赛胜者得3分,负者得0分,在每一场比赛中,甲胜乙的概率为,丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.
(1)求的值;
(2)设在该次对抗比赛中,丙得分为,求的分布列、数学期望和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn,a1,公比q>0,S1+a1,S3+a3,S2+a2成等差数列.
(1)求{an};
(2)设bn,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上、下顶点分别为和,且其离心率为.
(1)求椭圆的标准方程;
(2)点是直线上的一个动点,直线分别交椭圆于两点(四点互不重合),请判断直线是否恒过定点.若过定点,求出定点的坐标;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,且、).设关于的不等式的解集为,且方程的两实根为、.
(1)若,完成下列问题:
①求、的关系式;
②若、都是负整数,求的解析式;
(2)若,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.
(Ⅰ)求“抽取的卡片上的数字满足”的概率;
(Ⅱ)求“抽取的卡片上的数字,,不完全相同”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的六面体中,四边形ABCD是边长为2的正方形,四边形ABEF是梯形,,平面平面ABEF,BE=2AF=2,EF.
(1)在图中作出平面ABCD与平面DEF的交线,并写出作图步骤,但不要求证明;
(2)求证:平面DEF;
(3)求平面ABEF与平面ECD所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com