【题目】已知一动圆P与定圆
外切,且与直线
相切,记动点P的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点
作直线l与曲线E交于不同的两点B、C,设BC中点为Q,问:曲线E上是否存在一点A,使得
恒成立?如果存在,求出点A的坐标;如果不存在,说明理由.
【答案】(1)
;(2)存在,
/
【解析】
(1)根据条件可得点P到直线
的距离等于到定点
的距离.再由抛物线的定义可得抛物线的方程.
(2) 若抛物线上的点
满足
,则点
在以
为直径的圆上,即
.再方程联立可解.
(1)设圆
的圆心为
,动圆P的半径为
.
则由动圆P与定圆
外切,则
,
又动圆P与直线
相切,所以点P到直线
的距离为
,
所以点P到直线
的距离等于到定点
的距离.
所以点P的轨迹是以
为焦点的抛物线,其方程为:
.
所以曲线E的方程为:
。
(2)由题意B、C两点在抛物线
上,设
设直线
的方程为:
.
由
有
,
.
设满足条件的点
存在,设
.
若抛物线上的点
满足
,则点
在以
为直径的圆上.
即
.
所以![]()
![]()
![]()
![]()
,
由题意即是
恒成立,可得
.
所以
所以抛物线
上存在点
满足
.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,离心率为
的椭圆
的左顶点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于
两点,直线
分别与
轴交于
,
两点.若直线
斜率为
时,
.
(1)求椭圆
的标准方程;
(2)试问以
为直径的圆是否经过定点(与直线
的斜率无关)?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对该班40名学生进行了问卷调查,得到了如下的
列联表:
男生 | 女生 | 总计 | |
喜爱打篮球 | 19 | 15 | 34 |
不喜爱打篮球 | 1 | 5 | 6 |
总计 | 20 | 20 | 40 |
(1)在女生不喜爱打篮球的5个个体中,随机抽取2人,求女生甲被选中的概率;
(2)判断能否在犯错误的概率不超过
的条件下认为喜爱篮球与性别有关?
附:
,其中
.
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | <>0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,过点
的动圆恒与
轴相切,
为该圆的直径,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的任意直线
与曲线
交于点
,
为
的中点,过点
作
轴的平行线交曲线
于点
,
关于点
的对称点为
,除
以外,直线
与
是否有其它公共点?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过椭圆
的四个顶点与坐标轴垂直的四条直线围成的矩形
(
是第一象限内的点)的面积为
,且过椭圆
的右焦点
的倾斜角为
的直线过点
.
(1)求椭圆
的标准方程
(2)若射线
与椭圆
的交点分别为
.当它们的斜率之积为
时,试问
的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com