精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于 两点.若直线斜率为 时, .

(1)求椭圆的标准方程;

(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.

【答案】(1);(2)以为直径的圆过定点.

【解析】试题分析:第一问根据椭圆的离心率和对应的弦长,求出对应的的值,从而得出椭圆的方程,第二问设出两点的坐标,从而求得直线和直线的方程,从而求得点的坐标,从而写出以为直径的圆的方程,根据点在椭圆上,以及曲线过定点的条件,从而求得所过的定点的坐标.

试题解析:()设

直线斜率为时,

椭圆的标准方程为

)以为直径的圆过定点

,则,且,即

直线方程为:

直线方程为:

为直径的圆为

,解得

为直径的圆经过定点:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在非零实数集上的函数满足,且是区间上的递增函数.

1)求的值;

2)求证:

3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的菱形, 平面 是棱上的一个点, 的中点.

(1)证明: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校自主招生一次面试成绩的茎叶图和频率分布直方图均受到了不同程度的损坏,其可见部分信息如下,据此解答下列问题:

1)求参加此次高校自主招生面试的总人数面试成绩的中位数及分数在内的人数

2)若从面试成绩在内的学生中任选两人进行随机复查求恰好有一人分数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知PA垂直于矩形ABCD所在的平面,M、N分别为AB、PC的中点,且

(1)求证:平面PAD;

(2)求证:面PCD;

(3)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是实数,函数

(1)求证:函数不是奇函数;

(2)当时,解关于的不等式

(3)求函数的值域(用表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市今年出现百年不遇的旱情,广大市民自觉地节约用水.市自来水厂观察某蓄水池供水情况以制定节水措施,发现某蓄水池中有水450吨,水厂每小时可向蓄水池中注水80吨,同时蓄水池又向居民小区供水,t小时内供水量为吨,现在开始向水池注水并向居民小区供水.

(1)请将蓄水池中存水量S表示为时间t的函数;

(2)问开始蓄水后几小时存水量最少?

(3)若蓄水池中水量少于150吨时,就会出现供水量紧张现象,问每天有几小时供水紧张?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.

(1)求证:EF∥平面PAD

(2)求三棱锥B-EFC的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣aln(x+2),g(x)=xex , 且f(x)存在两个极值点x1、x2 , 其中x1<x2
(1)求实数a的取值范围;
(2)求g(x1﹣x2)的最小值;
(3)证明不等式:f(x1)+x2>0.

查看答案和解析>>

同步练习册答案