【题目】设函数f(x)=x2﹣aln(x+2),g(x)=xex , 且f(x)存在两个极值点x1、x2 , 其中x1<x2 .
(1)求实数a的取值范围;
(2)求g(x1﹣x2)的最小值;
(3)证明不等式:f(x1)+x2>0.
【答案】
(1)解:由题:f′(x)=2x﹣ (x>﹣2).
∵f(x)存在两个极值点x1、x2,其中x1<x2
∴关于x的方程2x﹣ =0,即2x2+4x﹣a=0在(﹣2,+∞)内有不等实根
令S(x)=2x2+4x(x>﹣2),T(x)=a,
则﹣2<a<0,
∴实数a的取值范围是(﹣2,0)
(2)解:由(1)可知
∴g(x)=xex得g(x)=(x+1)ex
∴当x∈(﹣2,﹣1)时,g′(x)<0,即g(x)在(﹣2,﹣1)单调递减;当x∈(﹣1,0)时,g′(x)>0,即g(x)在(﹣1,0)单调递增
∴g(x1﹣x2)min=g(﹣1)=﹣
(3)证明:由(1)知 ,
∴ =
令﹣x2=x,则0<x<1且
F(x)=﹣x﹣
F′(x)=﹣1+ (0<x<1)
∴G(x)= (0<x<1)
G′(x)=﹣ =
∵0<x<1,
∴G′(x)=﹣
∵0<x<1,∴G′(x)<0,即F′(x)在(0,1)上是减函数.
∴F′(x)>F′(1)>0,
∴F(x)在(0,1)上是增函数
∴F(x)<F(1)=﹣1,即 ,即f(x1)+x2>0
【解析】(1)f(x)存在两个极值点,等价于其导函数有两个相异零点;(2)先找出(x1﹣x2)的取值范围,再利用g(x)的导函数可找出最小值;(3)适当构造函数,并注意x1与x2的关系,转化为函数求最大值问题,证明相关不等式.
【考点精析】关于本题考查的函数的极值与导数和函数的最大(小)值与导数,需要了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于, 两点.若直线斜率为 时, .
(1)求椭圆的标准方程;
(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数满足且,则称函数为“函数”.
试判断是否为“函数”,并说明理由;
函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;
在条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且满足 = ,
(1)求角C的大小;
(2)设函数f(x)=2sinxcosxcosC+2sin2xsinC﹣ ,求函数f(x)在区间[0, ]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥面ABCD,已知∠ABC=45°,AB=2,BC=2 ,SB=SC= .
(1)设平面SCD与平面SAB的交线为l,求证:l∥AB;
(2)求证:SA⊥BC;
(3)求直线SD与面SAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左焦点为,右顶点为,离心率为,已知点是抛物线的焦点,点到抛物线准线的距离是.
(1)求椭圆的方程和抛物线的方程;
(2)若是抛物线上的一点且在第一象限,满足,直线交椭圆于两点,且,当的面积取得最大值时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com