精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是边长为的菱形, 平面 是棱上的一个点, 的中点.

(1)证明: 平面

(2)求直线与平面所成角的正弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1连接,取的中点,所以,所以平面 平面,所以平面平面,所以平面;(2)建立空间直角坐标系,求出平面的法向量,求得线面夹角的正弦值。

试题解析:

(1)证明:连接,设,取的中点,连接

中,因为分别为的中点,所以

平面,所以平面

同理,在中, 平面

因为平面,所以平面.

(2)以为坐标原点,分别以所在的直线为轴,建立如图所示的空间直角坐标系

在等边三角形中,因为,所以

因此

设平面的一个法向量为

,取,得

直线与平面所成的角为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着互联网的发展,移动支付又称手机支付逐渐深入人民群众的生活某学校兴趣小组为了了解移动支付在人民群众中的熟知度,对岁的人群随机抽样调查,调查的问题是你会使用移动支付吗?其中,回答的共有50个人,把这50个人按照年龄分成5组,并绘制出频率分布表部分数据模糊不清如表:

分组

频数

频率

1

10

2

3

15

4

5

2

合计

50

表中处的数据分别是多少?

从第1组,第3组,第4组中用分层抽样的方法抽取6人,求每组抽取的人数.

抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网格纸的各小格都是边长为1的正方形,图中粗实线画出的是一个几何体的三视图,其中正视图是正三角形,则该几何体的外接球表面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正整数,若它的每个质因数都至少是两重的(即每个质因数乘方次数都不小于2),则称该正整数为“漂亮数”.相邻两个正整数皆为“漂亮数”,就称它们是一对“孪生漂亮数”.例如89就是一对“孪生漂亮数”.请你再找出两对“孪生漂亮数”来.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+1|+|x﹣3|
(1)求函数f(x)的最小值;
(2)若{x|f(x)≤t2﹣3t}∩{x|﹣2≤x≤0}≠.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 平面 .

求证:平面平面

求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面为平行四边形,MPC中点.

(1)求证:BA平面PCD

(2)求证:AP平面MBD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于 两点.若直线斜率为 时, .

(1)求椭圆的标准方程;

(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足,则称函数为“函数”.

试判断是否为“函数”,并说明理由;

函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;

条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求

查看答案和解析>>

同步练习册答案