精英家教网 > 高中数学 > 题目详情

求由曲线所围成的平面图形的面积。

1

解析试题分析:

考点:本题主要考查定积分的几何意义。
点评:简单题,分析函数图象,明确所求面积图形特征,利用定积分计算面积。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数其中
(1)若=0,求的单调区间;
(2)设表示两个数中的最大值,求证:当0≤x≤1时,||≤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1) 求的单调区间与极值;
(2)是否存在实数,使得对任意的,当时恒有成立.若存在,求的范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中
(1)若有极值,求的取值范围;
(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

其中,曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数 
(1) 当时,求函数的最值;
(2) 求函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l2分)
已知函数
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知曲线y=
(1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.

查看答案和解析>>

同步练习册答案