(本小题满分l2分)
已知函数
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?
(1)极小值 (2)不存在
解析试题分析:(I)由已知得,
则当时,可得函数在上是减函数,
当时,可得函数在上是增函数,
故函数的极小值为;
(Ⅱ)若存在,设,则对于某一实数,方程在上有三个不同的实数根,设,
则有两个不同的零点,即关于的方程有两个不同的解
,
则,
设,则,故在上单调递增,
则当时,即,
又,则故在上是增函数,
则至多只有一个解,故不存。
方法二:关于方程的解,
当时,由方法一知,此时方程无解;
当时,可以证明是增函数,此方程最多有一个解,故不存在。
考点:利用导数研究函数的单调性;极值;函数的零点.
点评:本题考查函数的单调区间的求法,考查满足条件的实数的取值范围的求法.综合性强,难度大,具有一定的探索性.解题时要认真审题,仔细解答,注意合理地进行等价转化.
科目:高中数学 来源: 题型:解答题
设函数
(1)当时,求的最大值;
(2)令,以其图象上任意一点为切点的切线的斜率恒成立,求实数的取值范围;
(3)当时,方程有唯一实数解,求正数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.
(1)用表示a,b,c;
(2)若函数在(-1,3)上单调递减,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
.(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:
(III)求证
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com