已知
在区间[0,1]上是增函数,在区间
上是减函数,又![]()
(Ⅰ)求
的解析式;
(Ⅱ)若在区间
(m>0)上恒有
≤
成立,求m的取值范围.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知f(x)=
(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=
的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l2分)
已知函数![]()
(1)若
,求函数
的极小值;
(2)设函数
,试问:在定义域内是否存在三个不同的自变量
使得
的值相等,若存在,请求出
的范围,若不存在,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若A,B是函数f(x)图象上不同的两点,且直线AB的斜率恒大于1,求实数m的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知函数
(
)的图象为曲线
.
(Ⅰ)求曲线
上任意一点处的切线的斜率的取值范围;
(Ⅱ)若曲线
上存在两点处的切线互相垂直,求其中一条切线与曲线
的切点的横坐标的取值范围;
(Ⅲ)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
设点P在曲线
上,从原点向A(2,4)移动,如果直线OP,曲线
及直线x=2所围成的面积分别记为
、
。![]()
(Ⅰ)当
时,求点P的坐标;
(Ⅱ)当
有最小值时,求点P的坐标和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知数列
的前
项和为
,函数
,
(其中
均为常数,且
),当
时,函数
取得极小值.![]()
均在函数
的图像上(其中
是
的导函数).
(Ⅰ)求
的值;
(Ⅱ)求数列
的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com