已知在区间[0,1]上是增函数,在区间上是减函数,又
(Ⅰ)求的解析式;
(Ⅱ)若在区间(m>0)上恒有≤成立,求m的取值范围.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l2分)
已知函数
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若A,B是函数f(x)图象上不同的两点,且直线AB的斜率恒大于1,求实数m的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知函数()的图象为曲线.
(Ⅰ)求曲线上任意一点处的切线的斜率的取值范围;
(Ⅱ)若曲线上存在两点处的切线互相垂直,求其中一条切线与曲线的切点的横坐标的取值范围;
(Ⅲ)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
设点P在曲线上,从原点向A(2,4)移动,如果直线OP,曲线及直线x=2所围成的面积分别记为、。
(Ⅰ)当时,求点P的坐标;
(Ⅱ)当有最小值时,求点P的坐标和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知数列的前项和为,函数,
(其中均为常数,且),当时,函数取得极小值.
均在函数的图像上(其中是的导函数).
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com