精英家教网 > 高中数学 > 题目详情
已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠-
1
a
}
,则
a2+b2+7
a-b
(其中a>b)的最小值为
 
分析:通过关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠-
1
a
}
,求出a,b的关系,代入
a2+b2+7
a-b
,利用基本不等式确定其最小值.
解答:解:关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠-
1
a
}

说明x=-
1
a
时,不等式对应的方程为0,
可得b=
1
a
,ab=1
a2+b2+7
a-b
=
(a-b)2+9
a-b
=(a-b)+
9
a-b
≥6(当且仅当a=b+1取等号)
故答案为:6
点评:本题考查一元二次不等式的解法,考查转化思想,计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在一个红绿灯路口,红灯、黄灯和绿灯的时间分别为30秒、5秒和40秒.当你到达路口时,求不是红灯的概率.
(2)已知关于x的一元二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(Ⅰ)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[|m+n|2上是增函数的概率;
(Ⅱ)设点(
1
2
|m+n|min=
2
2
)是区域
x+y-8≤0
x>0
y>0
内的随机点,求MD上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次不等式ax2+bx+c>0的解集为(-2,3),则关于x的不等式cx+b
x
+a<0的解集为
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•蓝山县模拟)已知关于x的一元二次不等式ax2+bx+c≥0在实数集上恒成立,且a<b,则T=
a+b+cb-a
的最小值为
3
3

查看答案和解析>>

同步练习册答案