精英家教网 > 高中数学 > 题目详情
已知a>0且a≠1,函数f(x)=ax+x-4的零点为m,函数g(x)=1ogax+x-4的零点为n,则
1
m
+
2
n
的最小值为(  )
分析:构建函数F(x)=ax,G(x)=logax,h(x)=4-x,确定m+n=4,再利用“1”的代换,结合基本不等式,即可求得最小值.
解答:解:由题意,构建函数F(x)=ax,G(x)=logax,h(x)=4-x,
则h(x)与F(x),G(x)的交点A,B的横坐标分别为m、n,
注意到F(x)=ax,G(x)=logax,关于直线y=x对称,可以知道A,B关于y=x对称,
由于y=x与y=4-x交点的横坐标为2,
∴m+n=4,
1
m
+
2
n
=
1
4
(
1
m
+
2
n
)(m+n)
=
1
4
(3+
n
m
+
2m
n
)
1
4
(3+2
n
m
2m
n
)
=
1
4
(3+2
2
)
,当且仅当
2
m=n时取等号,
故选D.
点评:本题考查函数的零点,考查函数的最值,考查基本不等式的运用,考查学生分析解决问题的能力,确定m+n的值,利用“1”的代换是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=
2x-2a,(x≥2a)
2a,(x<2a)
,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,则使方程loga(x-ak)=loga2(x2-a2)有解时的k的取值范围为
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:普陀区二模 题型:解答题

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
1
1-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案