【题目】已知圆经过变换后得曲线.
(1)求的方程;
(2)若为曲线上两点, 为坐标原点,直线的斜率分别为且,求直线被圆截得弦长的最大值及此时直线的方程.
【答案】(1)(2)直线被圆: 截得弦长的最大值为,
此时,直线的方程为
【解析】试题分析:(1)根据转移法求轨迹方程:将代入得,化简可得(2)先根据斜率公式表示为,再联立直线方程与椭圆方程,结合韦达定理可得,由垂径定理得圆心到直线的距离最小时,弦长最大,而,因此当时,弦长最大,可得此时直线的方程.
试题解析:解:(Ⅰ)将代入得,
化简得,即为曲线的方程.
(Ⅱ)设, ,直线与圆: 的交点为.
当直线轴时, ,
由得或
此时可求得.
当直线与轴不垂直时,设直线的方程为,
联立消得,
, , ,
所以 ,
由得,
此时.
圆: 的圆心到直线的距离为,
所以,
得,
所以当时, 最大,最大值为,
综上,直线被圆: 截得弦长的最大值为,
此时,直线的方程为.
科目:高中数学 来源: 题型:
【题目】如图,已知直线关于直线对称的直线为,直线与椭圆分别交于点、和、,记直线的斜率为.
(Ⅰ)求的值;
(Ⅱ)当变化时,试问直线是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且当x>0时,函数f(x)的解析式为 .
(1)求当x<0时函数f(x)的解析式;
(2)用定义证明f(x)在(0,+∞)上的是减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD中,
(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF.
(2)当BE=BF=BC时,求三棱锥A′﹣EFD体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某理财公司有两种理财产品和.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
产品(其中)
(Ⅰ)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于,求的取值范围;
(Ⅱ)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,E,F,G分别是DD1 , AB,CC1的中点,则异面直线A1E与GF所成角为( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com