精英家教网 > 高中数学 > 题目详情

函数y=Asin(ωx+?)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:根据所给的三角函数的图象,可以看出函数的振幅和周期,根据周期公式求出ω的值,写出三角函数的形式,根据函数的图象过点(2,2),代入点的坐标,整理出初相,
点的函数的解析式,根据周期是8和特殊角的三角函数求出结果.
解答:由函数y=Asin(ωx+?)(A>0,ω>0)的部分图象可得 A=2,?=0,且 ×=4-0,∴ω=
∴函数y=2sin(x),且函数的周期为8.
由于f(1)+f(2)+f(3)+…f(8)=0,
∴f(1)+f(2)+f(3)+…f(11)=f(1)+f(2)+f(3)=2sin+2sin+2sin=2+2
故选C.
点评:本题考查根据函数y=Asin(ωx+φ)的图象确定函数的解析式,考查特殊角的三角函数值,本题解题的关键是看出要求结果的前八项之和等于0,要理解好函数的中的周期、
振幅、初相等概念,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=Asin(ωx+φ)(ω>0)与x轴的两个相邻的交点坐标为(-4,0),(2,0),则ω=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b,则8时的温度大约为
 
°C(精确到1°C)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)+C(A>0,ω>0,|φ|<
π2
)在同一周期中最高点的坐标为(2,2),最低点的坐标为(8,-4).
(I)求A,C,ω,φ的值;
(II)求出这个函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是函数y=Asin(ωx+φ),(-π<φ<π)的图象的一段,O是坐标原点,P是图象的最高点,A点坐标为(5,0),若|
OP
|=
10
OP
OA
=15
,则此函数的解析式为
y=sin(
π
4
x-
π
4
)
y=sin(
π
4
x-
π
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数y=Asin(ωx+φ),在同一周期内,当x=
π
12
时取最大值y=4;当x=
12
时,取最小值y=-4,那么函数的解析式为:(  )

查看答案和解析>>

同步练习册答案