精英家教网 > 高中数学 > 题目详情
给定△ABC,若点D满足
AD
=
2
3
AB
CD
=
1
3
CA
CB
,则λ等于(  )
A、
2
3
B、
1
3
C、-
1
3
D、-
2
3
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:利用向量的三角形法则、线性运算、向量基本定理即可得出.
解答: 解:∵
CD
=
CA
+
AD
=
CA
+
2
3
AB
=
CA
+
2
3
(
CB
-
CA
)
=
1
3
CA
+
2
3
CB

CD
=
1
3
CA
CB
比较,可得λ=
2
3

故选:A.
点评:本题考查了向量的三角形法则、线性运算、向量基本定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设互不相等的平面向量组
ai
(i=1,2,3,…),满足:①|
ai
|=2;②
ai
ai+1
=0,若
Tm
=
a1
+
a2
+…+
am
(m≥2),则|
Tm
|的取值集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)满足对一切实数,恒有f(x)+f(-x)=x2且在(-∞,0)上单调递增,若f(2-a)-f(a)>2-2a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=6lnx+ax2-10ax+25a,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)求a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是圆F1:(x+1)2+y2=8上任意一点,又F2(1,0),直线m分别与线段F1P,F2P交于M,N两点,且
MN
=
1
2
MF2
+
MP
),|
NM
+
F2P
|=|
NM
-
F2P
|.
(1)求点M的轨迹C的方程;
(2)直线x=my+2与椭圆交于A、B两点,点D在椭圆上,且
OA
+
OB
OD
,E(-
2
m
m-2
m
),设△EAB的面积为S,若0<S≤1,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1的底面边长是2,侧棱长为4,M、N分别是A1B1,CC1中点,则AN与BM所成角的余弦值为(  )
A、
2
3
B、
6
4
C、
7
34
68
D、
5
34
68

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥的侧棱长为2
3
,侧棱与底面所成角为60°,则该四棱锥的高为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AD,CE分别是△ABC的边BC,AB的中线,且
AD
=
a
CE
=
b
,则
AC
=
 
(用
a
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

在(0,2π)上满足
tan2x
=-tanx的x的取值范围是
 

查看答案和解析>>

同步练习册答案