精英家教网 > 高中数学 > 题目详情
已知cosx+3sinx=
5
,求tan2x.
考点:二倍角的正切,同角三角函数基本关系的运用
专题:三角函数的求值
分析:已知等式左边提取
10
,利用两角和与差的正弦函数公式化简,表示出x,代入tanx中利用诱导公式化简,再利用两角和与差的正切函数公式整理后,将tany的值代入计算求出tanx的值,tan2x利用二倍角的正切函数公式化简后,将tanx的值代入计算即可求出值.
解答: 解:∵
10
1
10
cosx+
3
10
sinx)=
5
,即
1
10
cosx+
3
10
sinx=
2
2

∴sin(x+y)=
2
2
(cosy=
1
10
,siny=
3
10
,tany=3),
∴x+y=2kπ+
π
4
,k∈Z,即x=2kπ+
π
4
-y,
∴tanx=tan(2kπ+
π
4
-y)=tan(
π
4
-y)=
1-tany
1+tany
=
1-3
1+3
=-
1
2

则tan2x=
2tanx
1-tan2x
=
2×(-
1
2
)
1-(-
1
2
)2
=-
4
3
点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在棱长为1的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内(包括边)的动点,且A1F∥平面D1AE,下列说法错误的是(  )
A、点F的轨迹是一条线段
B、A1F与BE不在同一平面
C、三棱锥F-A1D1A的体积为定值
D、A1F与D1E不可能平行

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,PA⊥平面ABCD,ABCD是矩形,AB=1,AD=
3
,点F是PB的中点,点E在边BC上移动.
(Ⅰ)若PA=1,求证:AF⊥PC;
(Ⅱ)若二面角P-BC-A的大小为60°,则CE为何值时,三棱锥F-ACE的体积为
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:函数f(x)=ax3+ax2+x既有极大值又有极小值;命题q:抛物线x2=2ay(a≠0)的准线与圆C:(x-2)2+(y+2)2=1相交.
(1)若“p或q”为真命题,求实数a的取值范围;
(2)若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,复数z=
m(m-2)
m-1
+(m2+2m-3)i,当m为何值时,
(1)z是纯虚数;   
(2)z对应的点位于复平面第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c,已知a=2
3
,c=4,且1+
tanA
tanB
=
2c
b
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),求:
(1)当
a
b
时,求x的值;
(2)若f(x)=
a
b
-2λ|
a
+
b
|,x∈[0,
π
2
],最小值是-
3
2
,求实数λ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+1.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,且满足a2+b2=6abcosC,sin2C=2sinAsinB,求f(C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某人在电视塔CD的一侧A处测得塔顶的仰角为30°,向前走了100
3
米到达B处测得塔顶的仰角为60°,则此塔的高度为
 
米.

查看答案和解析>>

同步练习册答案