精英家教网 > 高中数学 > 题目详情
(本小题满分15分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试分别解答以下两小题.
(ⅰ)若不等式对任意的恒成立,求实数的取值范围;
(ⅱ)若是两个不相等的正数,且,求证:
(Ⅰ)当时,增区间是;当时,增区间是,递减区间是(Ⅱ)(ⅰ)(ⅱ)

,则t>0,,令,得在(0,1)单调递减,在单调递增.

试题分析:(Ⅰ)f(x)的定义域为 ,………………1分

①当时,恒成立,f(x)递增区间是;………3分
②当时,,又x>0, 递增区间是,递减区间是.         ………………………5分
(Ⅱ)(ⅰ)
,
化简得:,  ………………7分
,
上恒成立,上单调递减,
所以,即的取值范围是 .………………9分
(ⅱ)上单调递增,

,   ……11分
,则t>0,,
,得在(0,1)单调递减,在单调递增,………13分

.        ………………………14分
点评:本题第一问中求单调区间需要对参数分情况讨论从而确定导数的正负;第二问中关于不等式恒成立问题常转化为求函数最值问题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数,其中.
(1)当时,求在曲线上一点处的切线方程;
(2)求函数的极值点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)作出函数的图像,并根据图像写出函数的单调区间;以及在各单调区间上的增减性.
(Ⅱ)求函数时的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分) 已知为实数,
(1)若,求的单调区间;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的的单调递减区间是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数上是增函数,则的取值范围是____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)己知函数
(1)求的单调区间;
(2)若时,恒成立,求的取值范围;
(3)若设函数,若的图象与的图象在区间上有两个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对函数,设点是图象上的两端点.为坐标原点,且点满足.点在函数的图象上,且为实数),则称的最大值为函数的“高度”,则函数在区间上的“高度”为        

查看答案和解析>>

同步练习册答案