(本题满分12分)有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P和Q(万元),它们与投入资金x(万元)的关系有经验公式:P=x,Q=.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少,能获得的最大利润为多少?
科目:高中数学 来源: 题型:解答题
(14分)病人按规定的剂量服用某药物,测得服药后,每毫升血液中含药量(毫克)与时间(小时)满足:前1小时内成正比例递增,1小时后按指数型函数(为常数)衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.
(1)求函数的解析式;
(2)已知每毫升血液中含药量不低于0.5毫克时有治疗效果,低于0.5毫克时无治疗效果.求病人一次服药后的有效治疗时间为多少小时?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品.
(Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共12分)
已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;
(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本大题13分)设、为函数 图象上不同的两个点,
且 AB∥轴,又有定点 ,已知是线段的中点.
⑴ 设点的横坐标为,写出的面积关于的函数的表达式;
⑵ 求函数的最大值,并求此时点的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)某新型智能在线电池的电量(单位:kwh)随时间(单位:小时)的变化规律是:,其中是智能芯片实时控制的参数。
(1)当时,求经过多少时间电池电量是 kwh;
(2)如果电池的电量始终不低于2 kwh,求参数的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com