精英家教网 > 高中数学 > 题目详情
已知等差数列{an}中,有
a11a10
+1<0,且该数列的前n项和Sn有最大值,则使得Sn>0 成立的n的最大值为(  )
分析:由题意可得
a11+a10
a10
<0,公差d<0,进而可得S19>0,S20<0,可得答案.
解答:解:由
a11
a10
+1<0可得
a11+a10
a10
<0
又∵数列的前n项和Sn有最大值,
∴可得数列的公差d<0,
∴a10>0,a11+a10<0,a11<0,
∴a1+a19=2a10>0,a1+a20=a11+a10<0.
∴S19>0,S20<0
∴使得Sn>0的n的最大值n=19,
故选B
点评:本题考查等差数列的性质在求解和的最值中应用,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案