精英家教网 > 高中数学 > 题目详情
已知命题p:?x∈R,使sin x=
5
2
;命题q:?x∈R,都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∧非q”是假命题;③命题“非p∨q”是真命题;④命题“非p∨非q”是假命题、其中正确的是
 
分析:根据正弦函数的值域及二次不等式的解法,我们易判断命题p:?x∈R,使sin x=
5
2
与命题q:?x∈R,都有x2+x+1>0的真假,进而根据复合命题的真值表,易判断四个结论的真假,最后得到结论.
解答:解:∵
5
2
>1
结合正弦函数的性质,易得
命题p:?x∈R,使sin x=
5
2
为假命题,
又∵x2+x+1=(x+
1
2
2+
3
4
>0恒成立
∴q为真命题,
故非p是真命题,非q是假命题;
所以p∧q是假命题,
p∧非q是假命题,
非p∨q是真命题、
故答案为:②③
点评:本题考查的知识点是复合命题的真假,其中根据正弦函数的值域及二次不等式的解法,判断命题p与命题q的真假是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“?x∈R*,x>
1x
”,命题p的否定为命题q,则q是“
 
”;q的真假为
 
.(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①已知命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题;
②函数y=
|x|
x2+1
的最小值为
1
2
且它的图象关于y轴对称;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
⑤若tanθ=2,则sin2θ=
4
5

其中正确命题的序号为
①④⑤
①④⑤
.(把你认为正确的命题序号填在横线处)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,cosx≤1,则?p命题是
?x∈R,cosx>1
?x∈R,cosx>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是
①②③④
①②③④
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2x<3x;命题q:?x∈R,2x≥1+x2,则下列命题中为真命题的是(  )

查看答案和解析>>

同步练习册答案