精英家教网 > 高中数学 > 题目详情

【题目】共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数,其中 是新样式单车的月产量(单位:件),利润总收益总成本.

(1)试将自行车厂的利润元表示为月产量的函数;

(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

【答案】(1);(2)当月产量件时,自行车厂的利润最大,最大利润为25000元.

【解析】试题分析:(1)根据利润总收益总成本写出利润与月产量的函数关系;(2)根据分段函数,分别求每段的最大值,分别利用二次函数和一次函数知识,注意自变量是自然数,即可求出.

试题解析:

(1)依题设,总成本为

(2)当时,

则当时,

时, 是减函数,

所以,当月产量件时,自行车厂的利润最大,最大利润为25000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,设:当时,不等式 恒成立;Q:当时,是单调函数。如果满足成立的的集合记为,满足Q成立的的集合记为,求A∩(CRB)(为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=5x+x-2,g(x)=log5x+x-2的零点分别为x1,x2,则x1+x2的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是.

(1)判断上的单调性,并证明;

(2)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作抛物线的两条切线, 切点分别为, .

(1) 证明: 为定值;

(2) 记△的外接圆的圆心为点, 是抛物线的焦点,任意实数, 试判断以为直径的圆是否恒过点? 并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是数学家伯努瓦·曼德尔布罗在世纪年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图所示的分形规律可得如图乙所示的一个树形图:

若记图乙中第行白圈的个数为,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4,且kR)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k·f(x),其中f(x)=若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.

(1)若只投放一次k个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k的值;

(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左顶点为.

(1)求椭圆的方程;

(2)已知为坐标原点, 是椭圆上的两点,连接的直线平行轴于点,证明: 成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2-8y+12=0,直线l经过点D(-2,0),且斜率为k.

(1)求以线段CD为直径的圆E的方程.

(2)若直线l与圆C相离,求k的取值范围.

查看答案和解析>>

同步练习册答案