精英家教网 > 高中数学 > 题目详情
已知椭圆上的点到左右两焦点的距离之和为,离心率为.
(1)求椭圆的方程;
(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.
(1);(2)

试题分析:(1)根据与离心率可求得a,b,c的值,从而就得到椭圆的方程;(2)设出直线的方程,并与椭圆方程联立消去y可得到关于x的一元二次方程,然后利用中点坐标公式与分类讨论的思想进行解决.
试题解析:(1),∴
,∴,∴
椭圆的标准方程为
(2)已知,设直线的方程为-,
联立直线与椭圆的方程,化简得:

的中点坐标为
①当时,的中垂线方程为
,∴点的中垂线上,将点的坐标代入直线方程得:
,即
解得 .
②当时,的中垂线方程为,满足题意,
∴斜率的取值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆 的离心率为 ,点 为其下焦点,点为坐标原点,过 的直线 (其中)与椭圆 相交于两点,且满足:.

(1)试用  表示
(2)求  的最大值;
(3)若 ,求  的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为.
(I)求椭圆的方程;
(II)设直线(直线不重合),若均与椭圆相切,试探究在轴上是否存在定点,使点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点,动点轴上的正射影为点,且满足直线.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段MN的两个端点M、N分别在轴、轴上滑动,且,点P在线段MN上,满足,记点P的轨迹为曲线W.
(1)求曲线W的方程,并讨论W的形状与的值的关系;
(2)当时,设A、B是曲线W与轴、轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线,直线与E交于A、B两点,且,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为,记直线CA、CB的斜率分别为,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l与椭圆C分别交于AB两点,其中点Ax轴下方,且=3.求过OAB三点的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点到准线的距离是                  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线的焦点的直线交抛物线于两点,且在直线上的射影分别是,则的大小为               .

查看答案和解析>>

同步练习册答案