精英家教网 > 高中数学 > 题目详情
(2012•贵州模拟)已知
x≥0
y≥0
x+2y≤2
,目标函数z=x-y的最大值为a,最小值为b,则(at+b)6展开式中t4的系数为(  )
分析:通过线性规划,利用最值求出a与b的值,然后通过二项式定理求出(at+b)6展开式中t4的系数即可.
解答:解:约束条件
x≥0
y≥0
x+2y≤2
表示的可行域如图:目标函数z=x-y经过A,B两点分别取得最大值和最小值,A(2,0),B(0,1),所以
a=2,b=-1,
则(at+b)6展开式中t4的系数,就是(2t-1)6展开式中t4的系数.
即:
C
2
6
2
4
 
(-1)4=240.
故选B.
点评:本题考查线性规划以及二项式定理的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•贵州模拟)已知圆C1的参数方程为
x=cosφ
y=sinφ
(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2cos(θ+
π
3
)

(Ⅰ)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;
(Ⅱ)圆C1、C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)已知函数f(x)=
a+blnx
x+1
在点(1,f(1))处的切线方程为x+y=2.
(I)求a,b的值;
(II)对函数f(x)定义域内的任一个实数x,f(x)<
m
x
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)若点P(1,1)为圆x2+y2-6x=0的弦MN的中点,则弦MN所在直线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)(x+1)(1-2x)5展开式中,x3的系数为
-40
-40
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)设集合M={x|x2-x-6<0},N={x|y=log2(x-1)},则M∩N等于(  )

查看答案和解析>>

同步练习册答案