精英家教网 > 高中数学 > 题目详情
10.已知A(6,-3),B(-3,5),若$\overrightarrow{AC}$=2$\overrightarrow{BC}$,则点C的坐标为(  )
A.(12,13)B.(-12,13)C.(-12,-13)D.(12,-13)

分析 利用向量坐标运算性质及其向量相等即可得出.

解答 解:设C(x,y),
∵$\overrightarrow{AC}$=2$\overrightarrow{BC}$,(x-6,y+3)=2(x+3,y-5),
∴x-6=2(x+3),y+3=2(y-5),
解得x=-12,y=13.
∴C(-12,13).
故选:B.

点评 本题考查了向量坐标运算性质及其向量相等,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.根据下列算法语句,

当输入x为70时,输出y的值为31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的通项公式an=3n+1,求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.抛物线C:y2=2px(p>0)的焦点为F,A为C上的一点,已知|AF|=3,直线OA的斜率为$\sqrt{2}$(O为坐标原点).
(1)求抛物线C的方程;
(2)过焦点F作两条互相垂直的直线l1、l2,设l1与C交于B、D两点,l2与C交于C、E两点,求四边形BCDE面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某市交管部门对一路段限速60km/h,为调查违章情况,对经过该路段的300辆汽车进行检测,将所得数据按[40,50),[50.60),[60,70),[70,80)(所有车辆的车速均在[40,80]内)分成四组,绘制成如图所示的频率分布直方图.
(1)若用分层抽样的方法,从这300辆车中抽取20辆,则违章车有多少辆?其中多少辆车的车速不低于70km/h?
(2)用此次检测结果估计全市车辆的违章情况,若随机抽取3辆车.
(i)求这3辆车中违章车辆数ξ的分布列及期望;
(ii)假如这3辆车都是违章车辆,从中随机抽取1辆,求其车速不低于70km.h的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$\overrightarrow a,\overrightarrow b,\overrightarrow c$为非零向量且相互不共线,下面四个命题:其中正确的是(  )
$(1)({\overrightarrow a•\overrightarrow b})•\overrightarrow c-({\overrightarrow a•\overrightarrow c})•\overrightarrow b=0$;            
$(2)|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
$(3)({\overrightarrow b•\overrightarrow c})•\overrightarrow a-({\overrightarrow a•\overrightarrow c})•\overrightarrow b不与\overrightarrow c垂直$;    
 $(4)({3\overrightarrow a+2\overrightarrow b})•({3\overrightarrow a-2\overrightarrow b})=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$f(α)=\frac{{cos({\frac{π}{2}+α})•cos({2π-α})•sin({\frac{3π}{2}-α})}}{{sin({-π-α})•sin({\frac{3π}{2}+α})}}$,
(1)化简f(α);
(2)若α是第三象限角,且$sinα=-\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2+bx+c,其中常数a,b,c∈R.
(1)若f(3)=f(-1)=-5,且f(x)的最大值是3,求函数f(x)的解析式;
(2)a=1,若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线2kx-y+1=0与椭圆$\frac{x^2}{9}+\frac{y^2}{m}=1$恒有公共点,则实数m的取值范围(  )
A.(1,9]B.[1,+∞)C.[1,9)∪(9,+∞)D.(9,+∞)

查看答案和解析>>

同步练习册答案