分析 (1)利用诱导公式即可化简得解;
(2)利用同角三角函数基本关系式可求cosα,进而计算即可得解.
解答 解:(1)$f(α)=\frac{{cos({\frac{π}{2}+α})•cos({2π-α})•sin({\frac{3π}{2}-α})}}{{sin({-π-α})•sin({\frac{3π}{2}+α})}}$=$\frac{(-cosα)cosα(-cosα)}{sinα(-cosα)}$=-$\frac{co{s}^{2}α}{sinα}$.
(2)∵α是第三象限角,且$sinα=-\frac{1}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
∴f(α)=-$\frac{co{s}^{2}α}{sinα}$=$\frac{24}{5}$.
点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{4}$或$-\frac{1}{12}$ | D. | $-\frac{1}{4}$或$\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 把函数f(x)图象上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移$\frac{π}{4}$个单位长度,可得到函数g(x)的图象 | |
| B. | 两个函数的图象均关于直线$x=-\frac{π}{4}$对称 | |
| C. | 两个函数在区间$(-\frac{π}{4},\frac{π}{4})$上都是单调递增函数 | |
| D. | 函数y=g(x)在[0,2π]上只有4个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (12,13) | B. | (-12,13) | C. | (-12,-13) | D. | (12,-13) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 截距相等的直线都可以用方程$\frac{x}{a}+\frac{y}{a}=1$表示 | |
| B. | 方程x+my-2=0(m∈R)不能表示平行y轴的直线 | |
| C. | 经过点P(1,1),倾斜角为θ的直线方程为y-1=tanθ(x-1) | |
| D. | 经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线方程为$y-{y_1}=\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}(x-{x_1})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com