精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x+1,g(x)=3x2-5
(1)求f(1),g(2)的值
(2)求g(a+1)的表达式
(3)求f(g(x))的表达式.

解:根据题意,得
(1)f(1)=2×1+1=3,g(2)=3×22-5=7;
(2)g(a+1)=3(a+1)2-5=3a2+6a-2;
(3)f(g(x))=2g(x)+1=2[3x2-5]+2=6x2-9.
分析:(1)根据函数f(x)、g(x)的对应法则,分别将x=1、x=2代入,即可求出f(1),g(2)的值;
(2)根据g(x)的对应法则,用a+1代替x,化简即可得出g(a+1)的表达式;
(3)先在f(x)表达式中用g(x)代替x,得f(g(x))=2g(x)+1,再将g(x)表达式代入即可得到所求.
点评:本题给出函数f(x)、g(x)的表达式,求f(g(x)的表达式.着重考查了函数的定义和解析式的求法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案