精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
,其左、右焦点分别为F1,F2,点P是坐标平面内一点,且|OP|=
7
2
PF1
PF2
=
3
4
(O为坐标原点).
(1)求椭圆C的方程;
(2)若过F1的直线L与该椭圆相交于M、N两点,且|
F1M
|=2|
F1N
|
,求直线L的方程.
(1)设P(x0,y0),F1(-c,0),F2(c,0).
则由|OP|=
7
2
,得x02+y02=
7
4

PF1
PF2
=
3
4
,得(-c-x0,-y0)•(c-x0,-y0)=
3
4

x02+y02-c2=
3
4
,∴c=1.
又∵
c
a
=
2
2
,∴a2=2,b2=1.
因此所求椭圆的方程为:
x2
2
+y2=1

(2)设直线L的方程为y=k(x+1),
联立
x2
2
+y2=1
y=k(x+1)
,得(1+2k2)x2+4k2x+2(k2-1)=0.
设M(x1,y1),N(x2,y2),
x1+x2=-
4k2
2k2+1
x1x2=
2(k2-1)
2k2+1

∵y1=-2y2
-y2=y1+y2=k(x1+x2+2)=
2k
2k2+1
-2y22=y1y2=k2(x1x2+x1+x2+1)=-
k2
2k2+1
,解得:k=±
14
2

∴直线L的方程为y=±
14
2
(x+1)

14
x-2y+
14
=0
14
x+2y+
14
=0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F内分成了3:1的两段.
(1)求椭圆的离心率;
(2)过点C(-1,0)的直线l交椭圆于不同两点A、B,且
AC
=2
CB
,当△AOB的面积最大时,求直线l和椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点为F1(-c,0),F2(c,0),点Q是椭圆外的动点,满足|
F1Q
|=2a
,点P是线段F1Q与该椭圆的交点
(1)若点P的横坐标为
a
2
,证明:|
F1P
|=a+
c
2

(2)若存在点Q,使得△F1QF2的面积等于b2,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1,F2分别为椭圆C1
x2
b2
+
y2
a2
=1(a>b>0)的上下焦点,其F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF2|=
3
5

(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足
OA
+
OB
OP
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求
TM
TN
的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(200个•陕西)已知椭圆C:
x2
2
+
y2
b2
=1
(个>b>0)的离心率为
3
,短轴一个端点到右焦点的距离为
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于个、B两点,坐标原点O到直线l的距离为
3
2
,求△个OB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线方程y2=4x,过点P(1,2)的直线与抛物线只有一个交点,这样的直线有(  )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,过椭圆G右焦点F的直线m:x=1与椭圆G交于点M(点M在第一象限).
(Ⅰ)求椭圆G的方程;
(Ⅱ)已知A为椭圆G的左顶点,平行于AM的直线l与椭圆相交于B,C两点.判断直线MB,MC是否关于直线m对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△PBA,△APD,△CDP两两相似,则a,b间的关系一定满足(  )
A.a≥bB.a≥bC.a≥bD.a≥2b

查看答案和解析>>

同步练习册答案