精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点为F1(-c,0),F2(c,0),点Q是椭圆外的动点,满足|
F1Q
|=2a
,点P是线段F1Q与该椭圆的交点
(1)若点P的横坐标为
a
2
,证明:|
F1P
|=a+
c
2

(2)若存在点Q,使得△F1QF2的面积等于b2,求椭圆离心率的取值范围.
(1)证明:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左准线方程为x=-
a2
c

∵点P的横坐标为
a
2

∴由椭圆的定义可知,
|
F1P
|
|
a
2
+
a2
c
|
=
c
a

|
F1P
|=a+
c
2

(2)设Q(x,y),则
|
F1Q
|=2a
,∴(x+c)2+y2=4a2
∴|y|≤2a
∵存在点Q,使得△F1QF2的面积等于b2
1
2
•2c•|y|=b2

|y|=
b2
c

b2
c
≤2a

∴e2+2e-1≥0
e≥
2
-1
e≤-
2
-1

∵0<e<1
2
-1≤e<1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线方程为y=±
3
x
,O为坐标原点,点M(
5
3
)
在双曲线上.
(1)求双曲线C的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
,求|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点F1、F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,
MA1
=2
A1F1

(I)求椭圆的标准方程;
(Ⅱ)过点M的直线l'与椭圆交于C、D两点,若
OC
OD
=0
,求直线l'的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线C与椭圆
x2
8
+
y2
4
=1
有相同的焦点,直线y=
3
x
为C的一条渐近线.
(1)求双曲线C的方程;
(2)过点P(0,4)的直线l,交双曲线C于A、B两点,交x轴于Q点(Q点与C的顶点不重合),当
PQ
=λ1
QA
=λ2
QB
,且λ1+λ2=-
8
3
时,求Q点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l过抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=4,
CB
=3
BF
,则p=(  )
A.2B.
4
3
C.
8
3
D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(
3
,0)
(1)求双曲线C的方程;
(2)若直线l:y=kx+
2
与双曲线C恒有两个不同的交点A和B,且
OA
OB
>2(其中O为原点).求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
,其左、右焦点分别为F1,F2,点P是坐标平面内一点,且|OP|=
7
2
PF1
PF2
=
3
4
(O为坐标原点).
(1)求椭圆C的方程;
(2)若过F1的直线L与该椭圆相交于M、N两点,且|
F1M
|=2|
F1N
|
,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆Γ的中心在坐标原点O,过右焦点F(1,0)且垂直于椭圆对称轴的弦MN的长为3.
(1)求椭圆Γ的方程;
(2)直线l经过点O交椭圆Γ于P、Q两点,NP=NQ,求直线l的方程.

查看答案和解析>>

同步练习册答案