精英家教网 > 高中数学 > 题目详情
直线l过抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=4,
CB
=3
BF
,则p=(  )
A.2B.
4
3
C.
8
3
D.4
过A,B分别作准线的垂线交准线于E,D.
|AF|=4,
CB
=3
BF
,∴|AE|=4,|CB|=3|BF|,且|BF|=|BD|,
设|BF|=|BD|=a,则|BC|=3a,
根据三角形的相似性可得
|BD|
|AE|
=
|CB|
|AC|
,即
a
4
=
3a
3a+a+4
,解得a=2,
|GF|
|AE|
=
|CF|
|AC|
,即
p
4
=
3a+a
3a+a+4
=
4a
4a+4

p=
4a
a+1
=
8
3

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.

(1)求证:△ABE≌△ACD; 
(2)若AB=6 cm,BC=4 cm,求AE的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l与双曲线
x2
2
-y2=1
的同一支相交于A,B两点,线段AB的中点在直线y=2x上,则直线AB的斜率为(  )
A.4B.2C.
1
2
D.
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点F′(-2,0),F(2,0),点P为坐标平面内的动点,且满足|
F′F
||
FP
|+
F′F
F′P
=0

(1)求动点P(x,y)的轨迹C的方程;
(2)过点F的直线l与轨迹C和⊙F:(x-2)2+y2=1交于四点,自下而上依次记这四点为A、B、C、D,求
AB
CD
的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px焦点F作直线l交抛物线于A,B两点,O为坐标原点,则△ABO为(  )
A.锐角三角形B.直角三角形C.不确定D.钝角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点为F1(-c,0),F2(c,0),点Q是椭圆外的动点,满足|
F1Q
|=2a
,点P是线段F1Q与该椭圆的交点
(1)若点P的横坐标为
a
2
,证明:|
F1P
|=a+
c
2

(2)若存在点Q,使得△F1QF2的面积等于b2,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1,F2分别为椭圆C1
x2
b2
+
y2
a2
=1(a>b>0)的上下焦点,其F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF2|=
3
5

(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足
OA
+
OB
OP
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(200个•陕西)已知椭圆C:
x2
2
+
y2
b2
=1
(个>b>0)的离心率为
3
,短轴一个端点到右焦点的距离为
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于个、B两点,坐标原点O到直线l的距离为
3
2
,求△个OB面积的最大值.

查看答案和解析>>

同步练习册答案