精英家教网 > 高中数学 > 题目详情
如图,椭圆Γ的中心在坐标原点O,过右焦点F(1,0)且垂直于椭圆对称轴的弦MN的长为3.
(1)求椭圆Γ的方程;
(2)直线l经过点O交椭圆Γ于P、Q两点,NP=NQ,求直线l的方程.
(1)设椭圆Γ的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
∵过右焦点F(1,0)且垂直于椭圆对称轴的弦MN的长为3.
c=1
2b2
a
=3
a2=b2+c2
解得a=2,b=
3
,c=1.
∴椭圆Γ的方程为
x2
4
+
y2
3
=1

(2)连接ON,由椭圆的对称性OP=OQ,
∵NP=NQ,∴ON⊥PQ,
b2
a
=
3
2
,∴N(1,-
3
2
)

kON=-
3
2
kl=-
1
kON
=
2
3

∴直线l的方程为y=
2
3
x
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.

(1)求证:△ABE≌△ACD; 
(2)若AB=6 cm,BC=4 cm,求AE的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点为F1(-c,0),F2(c,0),点Q是椭圆外的动点,满足|
F1Q
|=2a
,点P是线段F1Q与该椭圆的交点
(1)若点P的横坐标为
a
2
,证明:|
F1P
|=a+
c
2

(2)若存在点Q,使得△F1QF2的面积等于b2,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线方程y2=4x,过点P(1,2)的直线与抛物线只有一个交点,这样的直线有(  )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,过椭圆G右焦点F的直线m:x=1与椭圆G交于点M(点M在第一象限).
(Ⅰ)求椭圆G的方程;
(Ⅱ)已知A为椭圆G的左顶点,平行于AM的直线l与椭圆相交于B,C两点.判断直线MB,MC是否关于直线m对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知半椭圆
x2
b2
+
y2
a2
=1(y≥0)
和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆
x2
b2
+
y2
a2
=1(y≥0)
内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点M(
6
3
,-
3
3
)
时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆内接四边形中,则四边形的面积为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△PBA,△APD,△CDP两两相似,则a,b间的关系一定满足(  )
A.a≥bB.a≥bC.a≥bD.a≥2b

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,AB是半圆D的直径,P在AB的延长线上,PD与半圆O相切于点C,ADPD.若PC=4,PB=2,则CD=____________.

查看答案和解析>>

同步练习册答案