| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
分析 通过an=n、裂项可知$\frac{2}{{a}_{n}{a}_{n+1}}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),并项相加可知数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和为Tn=$\frac{2n}{n+1}$,进而可得结论.
解答 解:∵an=n,
∴$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
记数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和为Tn,
则Tn=2(1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)
=$\frac{2n}{n+1}$,
∵Tn=$\frac{12}{7}$,即$\frac{2n}{n+1}$=$\frac{12}{7}$,
∴n=6,
故选:B.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 大前提错误导致结论错 | B. | 小前提错误导致结论错误 | ||
| C. | 推理形式错误导致结论错 | D. | 结论是正确的 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com