精英家教网 > 高中数学 > 题目详情
16.数列{an}的通项公式为an=n,若数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和为$\frac{12}{7}$,则n的值为(  )
A.5B.6C.7D.8

分析 通过an=n、裂项可知$\frac{2}{{a}_{n}{a}_{n+1}}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),并项相加可知数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和为Tn=$\frac{2n}{n+1}$,进而可得结论.

解答 解:∵an=n,
∴$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
记数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和为Tn
则Tn=2(1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)
=$\frac{2n}{n+1}$,
∵Tn=$\frac{12}{7}$,即$\frac{2n}{n+1}$=$\frac{12}{7}$,
∴n=6,
故选:B.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知命题p:?a∈[1,2],m2-10m+19≤$\sqrt{{a}^{2}+8}$;命题q:函数f(x)=3x2+2mx+m+6有两个零点.求使“p∧¬q”为真命题是实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=a2x+$\frac{b}{x}$(ab≠0),f(2)=4,则f(-2)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简:
(${a}^{\frac{1}{2}}$•$\root{3}{{b}^{2}}$)-3÷$\sqrt{{b}^{-4}\sqrt{{a}^{-2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,已知D是AB边上一点,若$\overrightarrow{AD}$=3$\overrightarrow{DB}$,$\overrightarrow{CD}$=$\frac{1}{4}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$,则λ等于(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.-$\frac{1}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某单位建造一间背面靠墙的小房,地面面积为12m2,房屋正面每平方米造价为1200元,房屋侧面每平方米造价为800元,屋顶的造价为5800元,如果墙高为3m,且不计房屋背面和地面的费用,设房屋正面地面的边长为xm,房屋的总造价为y元.
(Ⅰ)求y用x表示的函数关系式;
(Ⅱ)怎样设计房屋能使总造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x2-16<0},B={x2-8x+12<0},I=A∩B.
(1)求集合I.
(2)若函数f(x)=x2-2ax+1大于0对x∈I恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于三段论“因为指数函数y=ax(a>0,a≠1)恒过定点(0,1)(大前提),而y=-3×$(\frac{1}{2})^{x}$是指数函数(小前提),所以y=-3×$(\frac{1}{2})^{x}$恒过定点(0,1)(结论).”下列说法正确的是(  )
A.大前提错误导致结论错B.小前提错误导致结论错误
C.推理形式错误导致结论错D.结论是正确的

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果两条直线a∥b,且a∥面α,则b与α的位置关系是b∥α或b?α.

查看答案和解析>>

同步练习册答案